RNAs are key players in life as they connect the genetic code (DNA) with all cellular processes dominated by proteins. The dynamics study of RNA modifications has become an important part of epitranscriptomics field, as they are reversible and dynamically regulated far more than originally thought. Several evidences portrait a catalog of RNA modifications and their links to neurological disorders, cancers, and other diseases. Therefore, a deeper investigation of RNA modifications dynamics including their specific profile, biosynthesis, maturation and degradation is required for pioneering disease diagnostics and potential therapeutics development. Mammalian tissues reveal diverse physiology and functions, despite sharing identical genomes and overlapping transcription profiles. So far, most research on this diversity were referred to variable transcriptomic processing among tissues and differential post-translational modifications that tune the activity of ubiquitous proteins to each tissue’s needs. However, study of epitranscriptome dynamics relevance to tissues’ functions is not yet revealed. There are a few reports on mouse RNA modification profiles, which are focused on only one type of RNA and limited types of modifications. The first part of my dissertation aims to generate a comprehensive tissue-specific as well as RNA species-specific investigation of all existing RNA modifications, as well as investigating potential codon as an effector of translation diversity among tissues. Using isotope dilution mass spectrometry, I created a library including absolute quantification of 24 tRNA modifications, and up to 22 rRNA modifications. I find an almost identical pattern of modifications in 28S- and 18S-rRNA subunits, but different levels of most modifications in 5.8S-rRNA or tRNA among highly metabolic active organs to e.g. heart or spleen. The findings suggest a high degree of similarity between quantities of modifications between presented data to all previous literature, confirming that it is a suitable model to study the tissue-based RNA modification patterns. The most noticeable difference exhibited was tRNA modifications, which suggests a discerning tRNA engagement in translation between different organs. This can be a good start for investigation of codon bias in enriched genes of specific tRNA modifications among different tissues that may cause differential translation pattern, causing organs diversity. Moreover, 5.8S rRNA data showed an organ-specific pattern, which proposes functional diversity of this rRNA subunit among different organs. Future studies must investigate the possible implications of organ-specific 5.8S rRNA modifications functions, to elucidate the core of the observed variations. Abundance of RNA modifications is carefully regulated in cells. Part of this regulation is achieved by activity of enzymes removing RNA modifications, named RNA erasers. Literature has provided proof of demethylation activity of AlkBH family on different types of RNA. For instance, AlkBH5 is known to remove m6A in mRNA, and both AlkBH3 and AlkBH1 are reported to demethylate m1A and m3C in tRNA. So far, RNA erasers are mainly studied in vitro and direct in vivo studies are missing. Mass spectrometry is a promising approach in the identification and quantification of many RNA modifications. However, mass spectrometric analysis by nature, offers only a static view of nucleic acid modifications, and fails to account for their cellular dynamics. Nucleic Acid Isotope Labeling coupled Mass Spectrometry (NAIL-MS) was developed as a powerful technique which differentiates among remaining, co-transcriptional and post-transcriptional incorporation of a target RNA modification. This temporal resolution captures the dynamic nature of RNA modifications, and offers absolute and relative quantification of all existing nucleosides in any given RNA sequence, including different isotopologues and isotopomers. The objective of this study was to uncover the first “direct” iv vivo data on AlkBH1, 3 and 5 activities in demethylating each of their specific substrates. I investigated the RNA modification changes through pulse-chase experiments in collaboration with my colleagues Dr. Kayla Borland and Dr. Felix Hagelskamp. A remarkable observation was that AlkBH3 protein -but not AlkBH1- was overexpressed under methylating reagent treatment in vivo. These findings suggest that AlkBH3 -but not AlkBH1- is a methylation damage induced enzyme, that potentially triggers ASCC-AlkBH3 alkylation repair complex after aberrant methylation damage by MMS treatment. However, using NAIL-MS method, we could not detect any significant effect on demethylation activity of the enzymes in tRNA, rRNA or mRNA towards the possible substrates m6A, m1A, m3C, m5C and m7G in vivo. These distinct outcomes can be partially explained by probable existence of other unidentified demethylases that compensate for AlkBHs demethylation activity; or more probably, demethylation may still arise by remaining active AlkBHs to restore the original levels of the observed RNA modifications, since a stronger KD or a complete knockout of AlkBHs genes was not possible. Further research on fully knocked out AlkBHs genes can provide stronger evidence on unidentified demethylation activities in HEK cells.