Significant advances in 3-dimensional echocardiography (3DE) technology have ushered its use into clinical practice. The recent advent of real-time 3DE using matrix array transthoracic and transesophageal transducers has resulted in improved image spatial resolution, and therefore, enhanced visualization of the pathomorphological features of the cardiac valves compared with previously used sparse array transducers. It has enabled an unparalleled real-time visualization of valves and subvalvular anatomic features from a single volume acquisition without the need for offline reconstruction. On-cart or offline post-processing using commercially available and custom 3-dimensional analysis software allows the quantification of multiple parameters, such as orifice area, prolapse height and volume in mitral valve disease, area of the left ventricular outflow tract, and tricuspid annular geometry. In this review, we discuss the incremental role of 3DE in evaluating valvular anatomic features, volumetric quantification, pre-surgical planning, intraprocedural guidance, and post-procedural assessment of valvular heart disease.