A kinetic study is reported for the reactions of 2-methoxy-3-nitropyridine 1a and 2methoxy-5-nitropyridine 1b with three secondary amines 2a-c (morpholine, piperidine, and pyrrolidine) in aqueous solution at 20 • C. The Brønsted-type plots are linear with nuc = 0.52 and 0.55 for pyridines 1a and 1b, respectively, indicating that the reaction proceeds through a S N Ar mechanism in which the first step is the ratedetermining step. Additional theoretical calculations using the DFT/B3LYP method confirm that the C-2 carbon being the most electrophilic center for the both pyridines 1a and 1b. The second-order rate constants have been used to evaluate the electrophilicity parameters E of 1a and 1b according to the linear free energy relationship log k (20 • C) = s N (N + E). The E parameters thus derived are compared with the electrophilic reactivities of a large variety of anisoles. The validity of these E values has been satisfactorily verified by comparison of calculated and experimental second-order rate constants for the reactions of pyridines 1a and 1b with anion of ethyl benzylacetate. K E Y W O R D S density functional theory, electrophilicity parameter (E), equation of Mayr, kinetics, S N Ar, substituted pyridine Int J Chem Kinet. 2019;51:249-257.