Pollination is a key ecosystem service for agricultural systems and Western honey bees, Apis mellifera, are the most important managed pollinators. Major losses of managed honey bee colonies reinforced the need to take advantage of locally adapted subspecies and ecotypes to buffer populations against various stressors. However, introductions of non-native honey bees from distant lineages are likely to undermine respective conservation efforts unless reliable and cost effective tools can be used to identify hybridization. The purpose of this study is to characterize current population structure and genetic diversity, and to assess the degree of admixture between native and introduced honey bees. Moreover, we aim to select a reduced number of genetic markers to improve conservation management strategies. We take advantage of recent developments in next-generation sequencing and network-based clustering to investigate conservation efforts for the native European Dark honey bee, A. m. mellifera, which is threatened by introgression in most of its range. We collected whole-genome sequence information from haploid drones of A. m. mellifera, A. m. carnica, and Buckfast sampled throughout Switzerland (N = 81), as well as from four Swiss A. m. mellifera conservation areas (N = 39) and from one conservatory in the French Alps (N = 31). Population structure analyses based upon 3.375 M genome-wide SNPs discerned samples by subspecies and geographic origin (Switzerland or France). Ancestry inference indicated admixed individuals in all of the protected areas, calling for improved management efforts. After testing different subsets of ancestry informative SNPs using three different selection strategies (F ST , PCA-based or at random), as few as 50 SNPs are found to be sufficient to differentiate native from introduced honey bees. Therefore, our data suggests that a low-density SNP panel can be a precise and cost-effective tool to support conservation management efforts for managed pollinators.