The natural distribution of the honeybee (Apis mellifera L.) has been changed by humans in recent decades to such an extent that the formerly widest-spread European subspecies, Apis mellifera mellifera, is threatened by extinction through introgression from highly divergent commercial strains in large tracts of its range. Conservation efforts for A. m. mellifera are underway in multiple European countries requiring reliable and cost-efficient molecular tools to identify purebred colonies. Here, we developed four ancestry-informative SNP assays for high sample throughput genotyping using the iPLEX Mass Array system. Our customized assays were tested on DNA from individual and pooled, haploid and diploid honeybee samples extracted from different tissues using a diverse range of protocols. The assays had a high genotyping success rate and yielded accurate genotypes. Performance assessed against whole-genome data showed that individual assays behaved well, although the most accurate introgression estimates were obtained for the four assays combined (117 SNPs). The best compromise between accuracy and genotyping costs was achieved when combining two assays (62 SNPs). We provide a ready-to-use cost-effective tool for accurate molecular identification and estimation of introgression levels to more effectively monitor and manage A. m. mellifera conservatories.
Pollination is a key ecosystem service for agricultural systems and Western honey bees, Apis mellifera, are the most important managed pollinators. Major losses of managed honey bee colonies reinforced the need to take advantage of locally adapted subspecies and ecotypes to buffer populations against various stressors. However, introductions of non-native honey bees from distant lineages are likely to undermine respective conservation efforts unless reliable and cost effective tools can be used to identify hybridization. The purpose of this study is to characterize current population structure and genetic diversity, and to assess the degree of admixture between native and introduced honey bees. Moreover, we aim to select a reduced number of genetic markers to improve conservation management strategies. We take advantage of recent developments in next-generation sequencing and network-based clustering to investigate conservation efforts for the native European Dark honey bee, A. m. mellifera, which is threatened by introgression in most of its range. We collected whole-genome sequence information from haploid drones of A. m. mellifera, A. m. carnica, and Buckfast sampled throughout Switzerland (N = 81), as well as from four Swiss A. m. mellifera conservation areas (N = 39) and from one conservatory in the French Alps (N = 31). Population structure analyses based upon 3.375 M genome-wide SNPs discerned samples by subspecies and geographic origin (Switzerland or France). Ancestry inference indicated admixed individuals in all of the protected areas, calling for improved management efforts. After testing different subsets of ancestry informative SNPs using three different selection strategies (F ST , PCA-based or at random), as few as 50 SNPs are found to be sufficient to differentiate native from introduced honey bees. Therefore, our data suggests that a low-density SNP panel can be a precise and cost-effective tool to support conservation management efforts for managed pollinators.
The most important managed pollinator, the honeybee (Apis mellifera L.), has been subject to a growing number of threats. In western Europe, one such threat is large‐scale introductions of commercial strains (C‐lineage ancestry), which is leading to introgressive hybridization and even the local extinction of native honeybee populations (M‐lineage ancestry). Here, we developed reduced assays of highly informative SNPs from 176 whole genomes to estimate C‐lineage introgression in the most diverse and evolutionarily complex subspecies in Europe, the Iberian honeybee (Apis mellifera iberiensis). We started by evaluating the effects of sample size and sampling a geographically restricted area on the number of highly informative SNPs. We demonstrated that a bias in the number of fixed SNPs (FST = 1) is introduced when the sample size is small (N ≤ 10) and when sampling only captures a small fraction of a population's genetic diversity. These results underscore the importance of having a representative sample when developing reliable reduced SNP assays for organisms with complex genetic patterns. We used a training data set to design four independent SNP assays selected from pairwise FST between the Iberian and C‐lineage honeybees. The designed assays, which were validated in holdout and simulated hybrid data sets, proved to be highly accurate and can be readily used for monitoring populations not only in the native range of A. m. iberiensis in Iberia but also in the introduced range in the Balearic islands, Macaronesia and South America, in a time‐ and cost‐effective manner. While our approach used the Iberian honeybee as model system, it has a high value in a wide range of scenarios for the monitoring and conservation of potentially hybridized domestic and wildlife populations.
Background With numerous endemic subspecies representing four of its five evolutionary lineages, Europe holds a large fraction of Apis mellifera genetic diversity. This diversity and the natural distribution range have been altered by anthropogenic factors. The conservation of this natural heritage relies on the availability of accurate tools for subspecies diagnosis. Based on pool-sequence data from 2145 worker bees representing 22 populations sampled across Europe, we employed two highly discriminative approaches (PCA and FST) to select the most informative SNPs for ancestry inference. Results Using a supervised machine learning (ML) approach and a set of 3896 genotyped individuals, we could show that the 4094 selected single nucleotide polymorphisms (SNPs) provide an accurate prediction of ancestry inference in European honey bees. The best ML model was Linear Support Vector Classifier (Linear SVC) which correctly assigned most individuals to one of the 14 subspecies or different genetic origins with a mean accuracy of 96.2% ± 0.8 SD. A total of 3.8% of test individuals were misclassified, most probably due to limited differentiation between the subspecies caused by close geographical proximity, or human interference of genetic integrity of reference subspecies, or a combination thereof. Conclusions The diagnostic tool presented here will contribute to a sustainable conservation and support breeding activities in order to preserve the genetic heritage of European honey bees.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.