2019
DOI: 10.48550/arxiv.1907.03483
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Quantifying Transparency of Machine Learning Systems through Analysis of Contributions

Abstract: Increased adoption and deployment of machine learning (ML) models into business, healthcare and other organisational processes, will result in a growing disconnect between the engineers and researchers who developed the models and the model's users and other stakeholders, such as regulators or auditors. This disconnect is inevitable, as models begin to be used over a number of years or are shared among third parties through user communities or via commercial marketplaces, and it will become increasingly diffic… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 18 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?