Abstract-Deep neural networks have achieved near-human accuracy levels in various types of classification and prediction tasks including images, text, speech, and video data. However, the networks continue to be treated mostly as black-box function approximators, mapping a given input to a classification output. The next step in this human-machine evolutionary processincorporating these networks into mission critical processes such as medical diagnosis, planning and control -requires a level of trust association with the machine output.Typically, statistical metrics are used to quantify the uncertainty of an output. However, the notion of trust also depends on the visibility that a human has into the working of the machine. In other words, the neural network should provide humanunderstandable justifications for its output leading to insights about the inner workings. We call such models as interpretable deep networks.Interpretability is not a monolithic notion. In fact, the subjectivity of an interpretation, due to different levels of human understanding, implies that there must be a multitude of dimensions that together constitute interpretability. In addition, the interpretation itself can be provided either in terms of the lowlevel network parameters, or in terms of input features used by the model. In this paper, we outline some of the dimensions that are useful for model interpretability, and categorize prior work along those dimensions. In the process, we perform a gap analysis of what needs to be done to improve model interpretability.
Saliency maps are a popular approach to creating post-hoc explanations of image classifier outputs. These methods produce estimates of the relevance of each pixel to the classification output score, which can be displayed as a saliency map that highlights important pixels. Despite a proliferation of such methods, little effort has been made to quantify how good these saliency maps are at capturing the true relevance of the pixels to the classifier output (i.e. their “fidelity”). We therefore investigate existing metrics for evaluating the fidelity of saliency methods (i.e. saliency metrics). We find that there is little consistency in the literature in how such metrics are calculated, and show that such inconsistencies can have a significant effect on the measured fidelity. Further, we apply measures of reliability developed in the psychometric testing literature to assess the consistency of saliency metrics when applied to individual saliency maps. Our results show that saliency metrics can be statistically unreliable and inconsistent, indicating that comparative rankings between saliency methods generated using such metrics can be untrustworthy.
Virtual organisations (VOs) are composed of a number of individuals, departments or organisations each of which has a range of capabilities and resources at their disposal. These VOs are formed so that resources may be pooled and services combined with a view to exploiting a perceived market niche. However, in the modern commercial environment it is essential to respond rapidly to changes in the market to remain competitive. Thus, there is a need for robust, agile, flexible systems to support the process of VO management. Within the CONOISE (www.conoise.org) project, agent-based models and techniques are being developed for the automated formation and maintenance of virtual organisations. In this paper we focus on the former, namely how an effective VO may be formed rapidly for a specified purpose. q
There is general consensus that it is important for artificial intelligence (AI) and machine learning systems to be explainable and/or interpretable. However, there is no general consensus over what is meant by 'explainable' and 'interpretable'. In this paper, we argue that this lack of consensus is due to there being several distinct stakeholder communities. We note that, while the concerns of the individual communities are broadly compatible, they are not identical, which gives rise to different intents and requirements for explainability/interpretability. We use the software engineering distinction between validation and verification, and the epistemological distinctions between knowns/unknowns, to tease apart the concerns of the stakeholder communities and highlight the areas where their foci overlap or diverge. It is not the purpose of the authors of this paper to 'take sides' -we count ourselves as members, to varying degrees, of multiple communities -but rather to help disambiguate what stakeholders mean when they ask 'Why?' of an AI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.