We study a fundamental yet under-explored facet in wireless communication -the width of the spectrum over which transmitters spread their signals, or the channel width. Through detailed measurements in controlled and live environments, and using only commodity 802.11 hardware, we first quantify the impact of channel width on throughput, range, and power consumption. Taken together, our findings make a strong case for wireless systems that adapt channel width. Such adaptation brings unique benefits. For instance, when the throughput required is low, moving to a narrower channel increases range and reduces power consumption; in fixed-width systems, these two quantities are always in conflict.We then present SampleWidth, a channel width adaptation algorithm for the base case of two communicating nodes. This algorithm is based on a simple search process that builds on top of existing techniques for adapting modulation. Per specified policy, it can maximize throughput or minimize power consumption. Evaluation using a prototype implementation shows that SampleWidth correctly identities the optimal width under a range of scenarios. In our experiments with mobility, it increases throughput by more than 60% compared to the best fixed-width configuration.
Abstract-Deep neural networks have achieved near-human accuracy levels in various types of classification and prediction tasks including images, text, speech, and video data. However, the networks continue to be treated mostly as black-box function approximators, mapping a given input to a classification output. The next step in this human-machine evolutionary processincorporating these networks into mission critical processes such as medical diagnosis, planning and control -requires a level of trust association with the machine output.Typically, statistical metrics are used to quantify the uncertainty of an output. However, the notion of trust also depends on the visibility that a human has into the working of the machine. In other words, the neural network should provide humanunderstandable justifications for its output leading to insights about the inner workings. We call such models as interpretable deep networks.Interpretability is not a monolithic notion. In fact, the subjectivity of an interpretation, due to different levels of human understanding, implies that there must be a multitude of dimensions that together constitute interpretability. In addition, the interpretation itself can be provided either in terms of the lowlevel network parameters, or in terms of input features used by the model. In this paper, we outline some of the dimensions that are useful for model interpretability, and categorize prior work along those dimensions. In the process, we perform a gap analysis of what needs to be done to improve model interpretability.
The need to provide customers with the ability to configure the network in current cloud computing environments has motivated the Networking-as-a-Service (NaaS) systems designed for the cloud. Such systems can provide cloud customers access to virtual network functions, such as network-aware VM placement, real time network monitoring, diagnostics and management, all while supporting multiple device management protocols. These network management functionalities depend on a set of underlying graph primitives. In this paper, we present the design and implementation of the software architecture including a shared graph library that can support network management operations. Using the illustrative case of all pair shortest path algorithm, we demonstrate how scalable lightweight dynamic graph query mechanisms can be implemented to enable practical computation times, in presence of network dynamism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.