We address the Least Quantile of Squares (LQS) (and in particular the Least
Median of Squares) regression problem using modern optimization methods. We
propose a Mixed Integer Optimization (MIO) formulation of the LQS problem which
allows us to find a provably global optimal solution for the LQS problem. Our
MIO framework has the appealing characteristic that if we terminate the
algorithm early, we obtain a solution with a guarantee on its sub-optimality.
We also propose continuous optimization methods based on first-order
subdifferential methods, sequential linear optimization and hybrid combinations
of them to obtain near optimal solutions to the LQS problem. The MIO algorithm
is found to benefit significantly from high quality solutions delivered by our
continuous optimization based methods. We further show that the MIO approach
leads to (a) an optimal solution for any dataset, where the data-points
$(y_i,\mathbf{x}_i)$'s are not necessarily in general position, (b) a simple
proof of the breakdown point of the LQS objective value that holds for any
dataset and (c) an extension to situations where there are polyhedral
constraints on the regression coefficient vector. We report computational
results with both synthetic and real-world datasets showing that the MIO
algorithm with warm starts from the continuous optimization methods solve small
($n=100$) and medium ($n=500$) size problems to provable optimality in under
two hours, and outperform all publicly available methods for large-scale
($n={}$10,000) LQS problems.Comment: Published in at http://dx.doi.org/10.1214/14-AOS1223 the Annals of
Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical
Statistics (http://www.imstat.org