Technology improvements and power constrains have taken multicore architectures to dominate
microprocessor designs over uniprocessors. At the same time, accelerator based architectures
have shown that heterogeneous multicores are very efficient and can provide high throughput for
parallel applications, but with a high-programming effort. We propose Castell a scalable chip
multiprocessor architecture that can be programmed as uniprocessors, and provides the high
throughput of accelerator-based architectures.
Castell relies on task-based programming models that simplify software development. These
models use a runtime system that dynamically finds, schedules, and adds hardware-specific features
to parallel tasks. One of these features is DMA transfers to overlap computation and data
movement, which is known as double buffering. This feature allows applications on Castell
to tolerate large memory latencies and lets us design the memory system focusing on memory
bandwidth.
In addition to provide programmability and the design of the memory system, we have used
a hierarchical NoC and added a synchronization module. The NoC design distributes memory
traffic efficiently to allow the architecture to scale. The synchronization module is a consequence
of the large performance degradation of application for large synchronization latencies.
Castell is mainly an architecture framework that enables the definition of domain-specific
implementations, fine-tuned to a particular problem or application. So far, Castell has been
successfully used to propose heterogeneous multicore architectures for scientific kernels, video
decoding (using H.264), and protein sequence alignment (using Smith-Waterman and clustalW).
It has also been used to explore a number of architecture optimizations such as enhanced DMA
controllers, and architecture support for task-based programming models.
iii