To investigate the developmental fates and the migratory pathways of dividing progenitors in both the white matter (WM) and the external granule layer (EGL) in the early postnatal rat cerebellum, a replication-deficient retrovirus carrying the beta-galactosidase gene (BAG) was injected into the deep cerebellar tissue or the EGL of postnatal rats to label dividing progenitors. After 1-3 days post-injection (1-3 dpi) of BAG into the deep cerebellar tissue of postnatal day 4/5 (P4/5) rats, labeled immature, unipolar cells were found mainly in the WM. From 4 to 6 dpi, similar cells appeared in the internal granule (IGL), Purkinje cell, and molecular layers, although about half of the labeled cells still resided in the WM and appeared immature. The first morphologically definable Bergmann glia, astrocytes, and oligodendrocytes were also observed. From 14 to 20 dpi, most labeled cells had developed into Bergmann glia, astrocytes, oligodendrocytes, and interneurons in their appropriate layers. When BAG injections were performed at P14, unipolar cells were initially observed, but the majority of these differentiated into myelinating oligodendrocytes in the WM and IGL by 17 dpi. Few immature cells were labeled by injections administered at P20, and these did not develop into mature glia, but into cells with lacy, fine processes, possible representing immature oligodendrocytes. In contrast, BAG-labeled progenitors of EGL produced only granule neurons. Thus, within the first 2 postnatal weeks, dividing progenitors in the WM migrate as immature cells into the cortex before differentiating into a variety of glia and interneurons. The genesis of oligodendrocytes continues through the 2nd postnatal week and largely ceases by P20. EGL cells do not produce glia, but only granule cells.