At present, laser surgery is one of the effective ways to treat the chronic central serous chorioretinopathy (CSCR), in which the location of the leakage area is of great importance. In order to alleviate the pressure on ophthalmologists to manually label the biomarkers as well as elevate the biomarker segmentation quality, a semiautomatic biomarker segmentation method is proposed in this paper, aiming to facilitate the accurate and rapid acquisition of biomarker location information. Firstly, the multimodal fundus images are introduced into the biomarker segmentation task, which can effectively weaken the interference of highlighted vessels in the angiography images to the location of biomarkers. Secondly, a semiautomatic localization technique is adopted to reduce the search range of biomarkers, thus enabling the improvement of segmentation efficiency. On the basis of the above, the low-rank and sparse decomposition (LRSD) theory is introduced to construct the baseline segmentation scheme for segmentation of the CSCR biomarkers. Moreover, a joint segmentation framework consisting of the above method and region growing (RG) method is further designed to improve the performance of the baseline scheme. On the one hand, the LRSD is applied to offer the initial location information of biomarkers for the RG method, so as to ensure that the RG method can capture effective biomarkers. On the other hand, the biomarkers obtained by RG are fused with those gained by LRSD to make up for the defect of undersegmentation of the baseline scheme. Finally, the quantitative and qualitative ablation experiments have been carried out to demonstrate that the joint segmentation framework performs well than the baseline scheme in most cases, especially in the sensitivity and F1-score indicators, which not only confirms the effectiveness of the framework in the CSCR biomarker segmentation scene but also implies its potential application value in CSCR laser surgery.