Abstract. The cement industry is keen on reducing natural resource consumption, reusing waste that would otherwise be sent to a rubbish tip and lowering its CO 2 emissions. In pursuit of those objectives, the addition of materials such as silica fume, ceramic waste, rice husk and precipitated or colloidal nanosilica, in the various stages of cement manufacture has become increasingly common. That practice inspired the present study (using isothermal conduction calorimetry, 29 Si and 27 Al MAS NMR, XRD and DTA/TG) of the effect of precipitated amorphous nanosilica (10 wt%) on white portland cement (WPC) hydration. The isothermal conduction calorimetry findings, which were consistent with the NMR and DTA/TG results, showed that adding amorphous nanosilica altered reaction kinetics, expediting alite and belite hydration. The addition also intensified the heat flow attributed to alumina phase hydration and brought the respective peak forward. Although no general consensus has been reached in the literature on the attribution of the third peak appearing on the calorimetric curve for WPC, based on the present findings, the main aluminate hydrate product is monosulfoaluminate. Furthermore, a pre-peak inflection point on the profile of the first exothermal peak on the WPC calorimetric curve was interpreted as the beginning of the pozzolanic reaction, which accelerates alite hydration, consuming portlandite and raising the heat released. C-S-H gel nanostructure was also modified. The results revealed a linear relationship in both the blended and the pure cement pastes between the degree of hydration and the number of Q 1 and Q 2 units in the gel. The presence of Q 2 units was much greater and of Q 1 units slightly lower in the former than in the latter.