2016
DOI: 10.1007/s00454-016-9840-0
|View full text |Cite
|
Sign up to set email alerts
|

Quantitative Helly-Type Theorem for the Diameter of Convex Sets

Abstract: We provide a new quantitative version of Helly's theorem: there exists an absolute constant α > 1 with the following property: if {Pi : i ∈ I} is a finite family of convex bodies in R n with int i∈I Pi = ∅, then there exist z ∈ R n , s αn and i1, . . . is ∈ I such thatwhere c > 0 is an absolute constant. This directly gives a version of the "quantitative" diameter theorem of Bárány, Katchalski and Pach, with a polynomial dependence on the dimension. In the symmetric case the bound O(n 3/2 ) can be improved to … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
8
0
2

Year Published

2016
2016
2022
2022

Publication Types

Select...
6
1

Relationship

1
6

Authors

Journals

citations
Cited by 15 publications
(10 citation statements)
references
References 16 publications
0
8
0
2
Order By: Relevance
“…For the conjecture above, the best lower bound on diam(∩F) is O(d −3/2 ) [14], due to Brazitikos. This is the first polynomial bound on the diameter of the intersection since the original paper by Bárány, Katchalski and Pach.…”
Section: Remarks and Open Problemsmentioning
confidence: 99%
“…For the conjecture above, the best lower bound on diam(∩F) is O(d −3/2 ) [14], due to Brazitikos. This is the first polynomial bound on the diameter of the intersection since the original paper by Bárány, Katchalski and Pach.…”
Section: Remarks and Open Problemsmentioning
confidence: 99%
“…A generalization of Barvinok's lemma was recently obtained by the first named author in [7]: There exists an absolute constant α > 1 with the following property: if K is a convex body whose minimal volume ellipsoid is the Euclidean unit ball, then there exist N αn points x 1 , . .…”
Section: Introductionmentioning
confidence: 99%
“…The proof involves a more delicate theorem of Srivastava from [21]. Using (1.3) one can establish the following "quantitative diameter version" of Helly's theorem (see [7]): If {P i : i ∈ I} is a finite family of convex bodies in R n with diam i∈I P i = 1, then there exist s αn and i 1 , . .…”
Section: Introductionmentioning
confidence: 99%
“…Μια γενίκευση του παραπάνω αποτελέσματος αποδείχθηκε πρόσφατα από τον Σ. Μπραζιτίκο στο [30]: υπάρχει απόλυτη σταθερά α > 1 με την ακόλουθη ιδιότητα: αν K είναι ένα κυρτό σώμα του οποίου το ελλειψοειδές ελαχίστου όγκου είναι η μοναδιαία Ευκλείδεια μπάλα, τότε υπάρχουν…”
Section: τυχαία προσέγγιση κυρτών σωμάτων και ο δείκτης κορυφώνunclassified
“…Για την απόδειξη χρησιμοποιείται, στη θέση του θεωρήματος των Batson, Spielman και Srivastava, ένα πιο λεπτό θεώρημα του Srivastava από το [96]. Η (5.1.3) αποδείχτηκε στο [30] με στόχο το ακόλουθο ποσοτικό θεώρημα τύπου Helly για τη διάμετρο:…”
Section: εισαγωγήunclassified