Liquid chromatography-multiple reaction monitoring mass spectrometry of peptides using stable isotope dilution (SID) provides a powerful tool for targeted protein quantitation. However, the high cost of labeled peptide standards for SID poses an obstacle to multiple reaction monitoring studies. We compared SID to a labeled reference peptide (LRP) method, which uses a single labeled peptide as a reference standard for all measured peptides, and a label-free (LF) approach, in which quantitation is based on analysis of un-normalized peak areas for detected MRM transitions. We analyzed peptides from the Escherichia coli proteins alkaline phosphatase and â€-galactosidase spiked into lysates from human colon adenocarcinoma RKO cells. We also analyzed liquid chromatography-multiple reaction monitoring mass spectrometry data from a recently published interlaboratory study by the National A rapidly evolving approach to protein quantitation is the targeted analysis of representative peptides by liquid chromatography-tandem mass spectrometry by multiple reaction monitoring (LC-MRM-MS) 1 analysis (1-3). In this approach, peptides are quantified by monitoring several MRM transitions for each peptide with either a triple quadrupole or a quadrupole-ion trap instrument. Stable isotope dilution (SID), in which labeled peptides are used as internal standards is considered the gold standard for rigorous quantitation by LC-MRM-MS (1, 4, 5). In contrast to antibody-based quantitation, where antibody availability and specificity are often limiting, LC-MRM-MS enables configuration of an assay for essentially any protein. In practice, this approach has proven sensitive enough to apply to challenging protein quantitation problems. For example, proteins can be quantified at singledigit copy numbers in cells (6) and in plasma at levels approaching ng/ml (7,8). With antibody-based enrichment, LC-MRM-MS can achieve even greater sensitivity (9 -12).