Biomarker discovery produces lists of candidate markers whose presence and level must be subsequently verified in serum or plasma. Verification represents a paradigm shift from unbiased discovery approaches to targeted, hypothesis-driven methods and relies upon specific, quantitative assays optimized for the selective detection of target proteins. Many protein biomarkers of clinical currency are present at or below the nanogram/milliliter range in plasma and have been inaccessible to date by MS-based methods. Using multiple reaction monitoring coupled with stable isotope dilution mass spectrometry, we describe here the development of quantitative, multiplexed assays for six proteins in plasma that achieve limits of quantitation in the 1-10 ng/ml range with percent coefficients of variation from 3 to 15% without immunoaffinity enrichment of either proteins or peptides. Sample processing methods with sufficient throughput, recovery, and reproducibility to enable robust detection and quantitation of candidate biomarker proteins were developed and optimized by addition of exogenous proteins to immunoaffinity depleted plasma from a healthy donor. Quantitative multiple reaction monitoring assays were designed and optimized for signature peptides derived from the test proteins. Based upon calibration curves using known concentrations of spiked protein in plasma, we determined that each target protein had at least one signature peptide with a limit of quantitation in the 1-10 ng/ml range and linearity typically over 2 orders of magnitude in the measurement range of interest. Limits of detection were frequently in the high picogram/milliliter range. Proteomics methods based on MS have emerged as the preferred strategy for discovery of diagnostic, prognostic, and therapeutic protein biomarkers. Most biomarker discovery studies use unbiased, "identity-based" approaches that rely on high performance mass spectrometers and extensive sample processing (1-3). Semiquantitative comparisons of protein relative abundance between disease and control patient samples are used to identify proteins that are differentially expressed (4 -9) and, thus, to populate lists of potential biomarkers. De novo proteomics discovery experiments often result in tens to hundreds of candidate biomarkers that must be subsequently verified in plasma (3). However, despite the large numbers of putative biomarkers, only a small number of them are passed through the development and validation process into clinical practice, and their rate of introduction is declining (10).Currently clinical validation of novel biomarkers relies primarily on immunoassays because of their specificity for the target analyte, sensitivity (picogram/milliliter), and high throughput. However, the development of a reliable immunoassay for quantitation of one target protein is expensive, has a long development time, and is dependent upon the generation of high quality protein antibodies. These reagent limitations along with the limited ability to multiplex immunoassays make it neces...
We report a mass spectrometry–based method for the integrated analysis of protein expression, phosphorylation, ubiquitination and acetylation by serial enrichments of different post-translational modifications (SEPTM) from the same biological sample. this technology enabled quantitative analysis of nearly 8,000 proteins and more than 20,000 phosphorylation, 15,000 ubiquitination and 3,000 acetylation sites per experiment, generating a holistic view of cellular signal transduction pathways as exemplified by analysis of bortezomib-treated human leukemia cells.
Genetically encoded libraries of peptides and oligonucleotides are well suited for the identification of ligands for many macromolecules. A major drawback of these techniques is that the resultant ligands are subject to degradation by naturally occurring enzymes. Here, a method is described that uses a biologically encoded library for the identification of D-peptide ligands, which should be resistant to proteolytic degradation. In this approach, a protein is synthesized in the D-amino acid configuration and used to select peptides from a phage display library expressing random L-amino acid peptides. For reasons of symmetry, the mirror images of these phage-displayed peptides interact with the target protein of the natural handedness. The value of this approach was demonstrated by the identification of a cyclic D-peptide that interacts with the Src homology 3 domain of c- SRC. Nuclear magnetic resonance studies indicate that the binding site for this D-peptide partially overlaps the site for the physiological ligands of this domain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.