In this work we consider the inverse problem of reconstructing the optical properties of a layered medium from an elastography measurement where optical coherence tomography is used as the imaging method. We hereby model the sample as a linear dielectric medium so that the imaging parameter is given by its electric susceptibility, which is a frequencyand depth-dependent parameter. Additionally to the layered structure (assumed to be valid at least in the small illuminated region), we allow for small scatterers which we consider to be randomly distributed, a situation which seems more realistic compared to purely homogeneous layers. We then show that a unique reconstruction of the susceptibility of the medium (after averaging over the small scatterers) can be achieved from optical coherence tomography measurements for different compression states of the medium.