Diversity and ecological features of cyanobacteria of the genus Nodularia from benthic, periphytic and soil habitats are less well known than those of Nodularia from planktonic habitats. Novel benthic Nodularia strains were isolated from the Baltic Sea and their morphology, the presence of gas vacuoles, nodularin production, gliding, 16S rRNA gene sequences, rpoB, rbcLX and ndaF genes, and gvpA-IGS regions were examined, as well as short tandemly repeated repetitive sequence fingerprints. Strains were identified as Nodularia spumigena, Nodularia sphaerocarpa or Nodularia harveyana on the basis of the size and shape of the different types of cells and the presence or absence of gas vacuoles. The planktonic strains of N. spumigena mostly had gas vacuoles and produced nodularin, whereas the benthic strains of N. sphaerocarpa and N. harveyana lacked gas vacuoles and did not produce nodularin (except for strain PCC 7804). The benthic strains were also able to glide on surfaces. In the genetic analyses, the planktonic N. spumigena and benthic N. sphaerocarpa formed monophyletic clusters, but the clusters were very closely related. Benthic strains determined as N. harveyana formed the most diverse and distant group of strains. In addition to phylogenetic analyses, the lack of the gvpA-IGS region and ndaF in N. sphaerocarpa and N. harveyana distinguished these species from the planktonic N. spumigena. Therefore, ndaF can be considered as a potential diagnostic tool for detecting and quantifying Baltic Sea bloom-forming, nodularin-producing N. spumigena strains. The data confirm that only one morphologically and genetically distinct planktonic species of Nodularia, N. spumigena, and at least two benthic species, N. sphaerocarpa and N. harveyana, exist in the Baltic Sea.