Cyanobacterial mass occurrences in freshwater lakes are generally formed by Anabaena, Microcystis, and Planktothrix, which may produce cyclic heptapeptide hepatotoxins, microcystins. Thus far, identification of the most potent microcystin producer in a lake has not been possible due to a lack of quantitative methods. The aim of this study was to identify the microcystin-producing genera and to determine the copy numbers of microcystin synthetase gene E (mcyE) in Lake Tuusulanjärvi and Lake Hiidenvesi in Finland by quantitative real-time PCR. The microcystin concentrations and cyanobacterial cell densities of these lakes were also determined. The microcystin concentrations correlated positively with the sum of Microcystis and Anabaena mcyE copy numbers from both Lake Tuusulanjärvi and Lake Hiidenvesi, indicating that mcyE gene copy numbers can be used as surrogates for hepatotoxic Microcystis and Anabaena. The main microcystin producer in Lake Tuusulanjärvi was Microcystis spp., since average Microcystis mcyE copy numbers were >30 times more abundant than those of Anabaena. Lake Hiidenvesi seemed to contain both nontoxic and toxic Anabaena as well as toxic Microcystis strains. Identifying the most potent microcystin producer in a lake could be valuable for designing lake restoration strategies, among other uses.
Anabaena is a filamentous, N 2 -fixing, and morphologically diverse genus of cyanobacteria found in freshwater and brackish water environments worldwide. It contributes to the formation of toxic blooms in freshwater bodies through the production of a range of hepatotoxins or neurotoxins. In the Baltic Sea, Anabaena spp.
Late summer cyanobacterial blooms in the Baltic Sea contain Anabaena sp. together with Nodularia spumigena and Aphanizomenon flos-aquae. Although Anabaena is common especially in the Gulf of Finland, very little is known about its genetic diversity. Here we undertook a molecular phylogenetic study of 68 Anabaena strains isolated from the brackish Gulf of Finland. We sequenced the 16S rRNA genes from 54 planktonic and 14 benthic Anabaena strains, and rbcL and rpoC1 genes from a subset of these strains. Phylogenetic trees showed that Anabaena strains, from both planktonic and benthic habitats, were genetically diverse. Although the Anabaena strains were morphologically diverse, in our study only one genetically valid species was found to exist in the plankton. Evolutionary distances between benthic Anabaena strains were greater than between planktonic strains, suggesting that benthic habitats allow for the maintenance of greater genetic diversity than planktonic habitats. A number of novel lineages containing only sequences obtained in this study were compiled in the phylogenetical analyses. Thus, it seemed that novel lineages of the genus Anabaena may be present in the Baltic Sea. Our results demonstrate that the Baltic Sea Anabaena strains show surprisingly high genetic diversity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.