ObjectivesBecause of the strong consumer driver towards more natural or higher sustainability cosmetic products, silk fibroin was evaluated to help develop a formulation with natural and effective ingredients for personal care. In order to exploit the physical properties of silk fibroin, it was evaluated to maximize the surfactant properties of other commercial ingredients to lower surface tension and build up viscosity. A synergistic effect was seen between silk fibroin and capryl glucoside, a sugar surfactant which exhibited a natural and effective co‐surfactant system. This system demonstrated better surface tension properties than sodium laureth sulphate (SLES), cocamidopropyl betaine (CAPB), rhamnolipids and sophorolipids, which led to greater foamability and cleansing properties. This system proved to also be compatible with polysaccharide viscosity modifiers to enhance the viscosity of the system. The present study comprises a systematic exploration of natural formulation development of silk proteins and other natural ingredients, which result in high performance such as enhanced foam quality, foam stability and enhanced sebum removal. All of these properties are desirable and may utilized when formulating cleaners and shampoos.MethodsA force tensiometer, Attension Sigma 701, was used to measure the surface tension of the silk protein and its various combinations with biosurfactants and biopolymers. To measure bulk rheology, a traditional mechanical rheometer TA DHR‐3 was utilized. Foaming tests and sebum removal assays were also carried out to evaluate the performance of the samples.ResultsSilk fibroin was evaluated to maximize the surfactant properties of other commercial systems to develop a formulation containing natural and effective ingredients for personal care. The surface activity of silk proteins was seen to be synergistically enhanced in the presence of sugar surfactants such as capryl glucoside, resulting in a surface tension at the air–water interface which is lower than either that of pure silk fibroin or pure capryl glucoside. This surface tension value is additionally lower than that obtained from currently utilized synthetic surfactants like sodium laureth sulphate (SLES) and cocamidopropyl betaine (CAPB). This reduction in surface tension demonstrated greater foamability and cleansing properties than that of the commercial systems. The very low surface tension values obtained through combinations of silk proteins and glucoside resulted in a natural and effective co‐surfactant system by forming high‐quality stable foams and enhancing sebum removal. The rheological performance of the silk proteins was impacted through microstructure modifications as a result of interactions with biopolymers like carrageenan. This shows that this system is compatible with polysaccharide viscosity modifiers. It was observed that both the flow curve and the absolute viscosity values were significantly impacted in the presence of carrageenan, with higher viscosity generation and significant non‐Newtonian/shear thinning behaviour evolution. These results indicate that the silk fibroin can be utilized to build a high‐performance natural product and significantly enhance the performance of other natural/sustainable cosmetic formulations through building synergistic interactions with other natural ingredients such as sugar surfactants and biopolymers. These properties exhibited by this system are all desirable for cleansers and shampoos within the cosmetic industry.ConclusionSilk fibroin in combination with capryl glucoside outperforms other commercial surfactants that are commonly used in the industry because of its surface‐active behaviour and synergy. This system is then enhanced further with polysaccharide rheological modifiers, carrageen and xanthan gum to help build up viscosity. The complex mixture of silk fibroin, sugar surfactant and biopolymer results in a formulation that is all natural, while still having high performance by achieving great foamability and enhanced sebum removal. The mixture can further be used to formulate a fully natural product such as a cleanser or shampoo while still having the same or greater effectiveness as synthetic surfactants and ingredients typically used in cosmetic formulations.