The protective effect of RCAC in skin barrier function and the positive response produced in human subjects with sensitive skin could be partially explained by our in vitro results showing a significant increase in opioid peptides release, an inhibitory effect on neuropeptides production, and modulation of cytokines production by keratinocytes under ultraviolet stress.
BackgroundExposure to ultraviolet (UV) radiation causes various forms of acute and chronic skin damage, including immunosuppression, inflammation, premature aging and photodamage. Furthermore, it induces the generation of reactive oxygen species, produces proinflammatory cytokines and melanocyte-stimulating hormone (MSH) and increases tyrosinase activity. The aim of this study was to evaluate the potential photoprotective effects of Rheum rhaponticum L. rhizome extract on human UV-stimulated melanocytes.MethodsThe effects of Rheum rhaponticum rhizome extract on tyrosine kinase activity, and on interleukin-1α (IL-1α), tumour necrosis factor α (TNF-α), and α-MSH production in human epidermal melanocytes were evaluated under UV-stimulated and non-stimulated conditions. Antioxidant activity was evaluated by lipid peroxidation and 1,1-dyphenyl-2-picryl-hydrazyl (DPPH) assays, while anti-tyrosinase activity was evaluated by the mushroom tyrosinase method.ResultsRheum rhaponticum L. rhizome extract showed in vitro antioxidant properties against lipid peroxidation, free radical scavenging and anti-tyrosinase activities, and inhibited the production of IL-1α, TNF-α, α-MSH, and tyrosine kinase activity in melanocytes subjected to UV radiation.ConclusionsThese results support the inclusion of Rheum rhaponticum L. rhizome extract into cosmetic, sunscreen and skin care products for the prevention or reduction of photodamage.
The use of topical retinoids to treat skin disorders and ageing can induce local reactions, while oral retinoids are potent teratogens and produce several unwanted effects. This way, efforts to explore complementary care resources should be supported. Based on this, we evaluate the antiageing effects of a supercritical CO2 extract from Bidens pilosa L. (BPE-CO2A) containing a standardized multicomponent mixture of phytol, linolenic, palmitic, linoleic, and oleic acids. BPE-CO2A was assessed for its effects on human dermal fibroblasts (TGF-β1 and FGF levels using ELISA; collagen, elastin, and glycosaminoglycan by colorimetric assays, and mRNA expression of RXR, RAR, and EGFr by qRT-PCR) and human skin fragments (RAR, RXR, collagen, elastin, and glycosaminoglycan by immunohistochemical analysis). Levels of extracellular matrix elements, TGF-β1 and FGF, and EGFr gene expression were significantly increased by BPE-CO2A. The modulation of RXR and RAR was positively demonstrated after the treatment with BPE-CO2A or phytol, a component of BPE-CO2A. The effects produced by BPE-CO2A were similar to or better than those produced by retinol and retinoic acid. The ability to stimulate extracellular matrix elements, increase growth factors, and modulate retinoid and rexinoid receptors provides a basis for the development of preparation containing BPE-CO2A as an antiageing/skin-repair agent.
Background
Hydration is an important factor to promote skin barrier function, metabolism, and appearance. In this process, the presence of aquaglyceroporins, envelope and lipid synthesis, and metabolism proteins are essential to provide greater corneocyte cohesion and to form a barrier avoiding transepidermal water loss.
Objective
We evaluated the effects of a new topical pigment‐free agent containing an Anadenanthera colubrina polysaccharide‐rich dermocosmetic preparation (ACP) on the aquaporin‐3 (AQP‐3), filaggrin (FLG), involucrin (INV), glucocerebrosidase (GBA), and elongation of very‐long‐chain fatty acid (ELOVL) proteins production in skin human fragments, as well as on the transepidermal water loss in a double‐blind placebo‐controlled clinical trial.
Methods
AQP3, FLG, INV, GBA, and ELOVL3 levels were measured by immunofluorescence analysis in human skin explants. Clinical trial was conducted to evaluate the effects of ACP 1% and ACP 3% on the transepidermal water loss (TEWL).
Results
Image and statistical analysis showed that ACP 3% significantly increased at 90% the expression of AQP3. Similarly, ACP 3% was able to promote a significant increase of 68% and 51% in FLG and INV, respectively. ACP 3% produced no effects on the GBA and ELOVL3 proteins. Transepidermal water loss was significantly reduced in human volunteers under treatment with ACP 1% and ACP 3%.
Conclusion
ACP reduced transepidermal water loss in a clinical trial, promoting human skin hydration. These effects were related to modulation of the AQP3, FLG, and INV as evidenced by immunofluorescence assay. This way, A colubrina polysaccharide‐rich phytopharmaceutical preparation is an effective additive product to skin hydration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.