We initiate the study of zero-error communication via quantum channels when the receiver and sender have at their disposal a noiseless feedback channel of unlimited quantum capacity, generalizing Shannon's zero-error communication theory with instantaneous feedback.We first show that this capacity is a function only of the linear span of Choi-Kraus operators of the channel, which generalizes the bipartite equivocation graph of a classical channel, and which we dub "non-commutative bipartite graph". Then we go on to show that the feedback-assisted capacity is non-zero (allowing for a constant amount of activating noiseless communication) if and only if the non-commutative bipartite graph is non-trivial, and give a number of equivalent characterizations. This result involves a far-reaching extension of the "conclusive exclusion" of quantum states [Pusey/Barrett/Rudolph, Nature Phys. 8(6):475-478, 2012].We then present an upper bound on the feedback-assisted zero-error capacity, motivated by a conjecture originally made by Shannon and proved later by Ahlswede. We demonstrate this bound to have many good properties, including being additive and given by a minimax formula. We also prove a coding theorem showing that this quantity is the entanglement-assisted capacity against an adversarially chosen channel from the set of all channels with the same Choi-Kraus span, which can also be interpreted as the feedbackassisted unambiguous capacity. The proof relies on a generalization of the "Postselection Lemma" (de Finetti reduction) [Christandl/König/Renner, Phys. Rev. Lett. 102:020504, 2009] that allows to reflect additional constraints, and which we believe to be of independent interest. This capacity is a relaxation of the feedback-assisted zero-error capacity; however, we have to leave open the question of whether they coincide in general.We illustrate our ideas with a number of examples, including classical-quantum channels and Weyl diagonal channels, and close with an extensive discussion of open questions. a A preliminary version of this paper was presented as a poster at QIP 2012, 12-16 December 2011