The higher order high-resolution (31)P and (19)F NMR spectra of hexafluorocyclotriphosphazene (F(2)PN)(3) were measured at 183 K and interpreted using subspectral analysis and iterative fitting computation. (F(2)PN)(3) forms a rigid nine-spin system [A[X](2)](3) with D(3h) symmetry. Two complete and very similar sets of six experimental spin-spin coupling constants, (1)J(P,F), (2)J(P,P), (2)J(F,F), (3)J(P,F), (4)J(F,F)(cis) and (4)J(F,F)(trans), were determined for the first time. Theoretical DFT calculations of chemical shifts and coupling constants were performed to assess their predictive value. The PP/aug-cc-pVDZ treatment rendered the best agreement with experimental data.