We study the effect of electric field and magnetic flux on spin entanglement in an artificial triangular molecule built of coherently coupled quantum dots. In a subspace of doublet states an explicit relation of concurrence with spin correlation functions and chirality is presented. The electric field modifies super-exchange correlations, shifts many-electron levels (the Stark effect) as well as changes spin correlations. For some specific orientation of the electric field one can observe monogamy, for which one of the spins is separated from two others. Moreover, the Stark effect manifests itself in a different spin entanglement for small and strong electric fields. A role of magnetic flux is opposite, it leads to circulation of spin supercurrents and spin delocalization.