Stable luminance properties are essential for light-emitting devices with excellent performance. Thermal photoluminescence (PL) quenching of quantum dots (QDs) under a high temperature resulting from a surface hole or electron traps will lead to unstable and dim brightness. After treating CdZnSe/ZnSe QDs with TBP, which is a well-known passivation reagent of the anions, the excess Se sites on the surface of the QDs were removed and their PL quantum yields (QYs) was improved remarkable. Furthermore, after TBP treatment, the CdZnSe/ZnSe QDs exhibit no quenching phenomena even at a high temperature of 310°C. The electroluminescent light-mitting diodes based on the QDs with TBP treatment also demonstrated satisfied performance with a maximum current density of 1679.6 mA/cm 2 , a peak luminance of 89500 cd/m 2 , and the maximum values of EQE and luminescence efficiency are 15% and 14.9 cd/A, respectively. The performance of the fabricated devices can be further improved providing much more in-depth studies on the CdZnSe/ZnSe QDs.