We study the quantum propagation of a Skyrmion in chiral magnetic insulators
by generalizing the micromagnetic equations of motion to a finite-temperature
path integral formalism, using field theoretic tools. Promoting the center of
the Skyrmion to a dynamic quantity, the fluctuations around the Skyrmionic
configuration give rise to a time-dependent damping of the Skyrmion motion.
From the frequency dependence of the damping kernel, we are able to identify
the Skyrmion mass, thus providing a microscopic description of the kinematic
properties of Skyrmions. When defects are present or a magnetic trap is
applied, the Skyrmion mass acquires a finite value proportional to the
effective spin, even at vanishingly small temperature. We demonstrate that a
Skyrmion in a confined geometry provided by a magnetic trap behaves as a
massive particle owing to its quasi-one-dimensional confinement. An additional
quantum mass term is predicted, independent of the effective spin, with an
explicit temperature dependence which remains finite even at zero temperature.Comment: 14 pages, 10 figure