Abstract:In classical recurrent neural networks, the pre- and post-relationships of time series tend to be neglected so that long-term overall memory is generally inaccessible; meanwhile, the weights are transferred and updated mainly by the gradient descent method, which leads to their low prediction accuracy and high computation cost in the application of residual useful life (RUL) prediction of rotating machinery (RM). In view of this, a quantum gene chain coding bidirectional neural network (QGCCBNN) is proposed to… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.