We introduce a new state called photon-added-and-subtracted two modes pair coherent state (PAASTMPCS) by simultaneously adding and subtracting photons to the different modes of a pair coherent state. Its nonclassical and non-Gaussian properties are strengthened via the negative values of its Wigner function as the numbers of adding and subtracting photons are increased. It indicates that the PAASTMPCS is an entangled state. When increasing the numbers of photon-added and photon-subtracted to a pair coherent state, the degree of entanglement in the PAASTMPCS is enhanced compared with the original pair coherent state. By using a PAASTM-PCS as a non-Gaussian entangled resource, the quantum teleportation processes are studied in detail. It is shown that the number sum and phase difference measurements protocol is more appropriate than the orthogonal quadrature components measurements protocol in the quantum teleportation process of a coherent state.