Inspired by Naor et al.'s visual secret sharing (VSS) scheme, a novel n out of n quantum visual secret sharing (QVSS) scheme is proposed, which consists of two phases: sharing process and recovering process. In the first process, the color information of each pixel from the original secret image is encoded into an n-qubit superposition state by using the strategy of quantum expansion instead of classical pixel expansion, and then these n qubits are distributed as shares to n participants, respectively. During the recovering process, all participants cooperate to collect these n shares of each pixel together, then perform the corresponding measurement on them, and execute the n-qubit XOR operation to recover each pixel of the secret image. The proposed scheme has the advantage of single-pixel parallel processing that is not available in the existing analogous quantum schemes and perfectly solves the problem that in the classic VSS schemes the recovered image has the loss in resolution. Moreover, its experiment implementation with the IBM Q is conducted to demonstrate the practical feasibility.INDEX TERMS n-qubit superposition state, n-qubit XOR operation, quantum expansion, quantum visual secret sharing, single-pixel parallel processing, visual cryptography.