BackgroundFunctional connectivity and complexity analysis has been discretely studied to understand intricate brain dynamics. The current study investigates the interplay between functional connectivity and complexity using the Kuramoto mean-field model.MethodFunctional connectivity matrices are estimated using the weighted phase lag index and complexity measures through popularly used complexity estimators such as Lempel-Ziv complexity (LZC), Higuchi's fractal dimension (HFD), and fluctuation-based dispersion entropy (FDispEn). Complexity measures are estimated on real and simulated electroencephalogram (EEG) signals of patients with mild cognitive-impaired Alzheimer's disease (MCI-AD) and controls. Complexity measures are further applied to simulated signals generated from lesion-induced connectivity matrix and studied its impact. It is a novel attempt to study the relation between functional connectivity and complexity using a neurocomputational model.ResultsReal EEG signals from patients with MCI-AD exhibited reduced functional connectivity and complexity in anterior and central regions. A simulation study has also displayed significantly reduced regional complexity in the patient group with respect to control. A similar reduction in complexity was further evident in simulation studies with lesion-induced control groups compared with non-lesion-induced control groups.ConclusionTaken together, simulation studies demonstrate a positive influence of reduced connectivity in the model imparting a reduced complexity in the EEG signal. The study revealed the presence of a direct relation between functional connectivity and complexity with reduced connectivity, yielding a decreased EEG complexity.
Over the last two decades, there has been a tremendous increase in research activity on brain connectivity studies and its application in different neurological disorders. Studies have been focused on different connectivity patterns generated and potential biomarkers that could be derived to find the etymology of the disorder. In this review, the focus is on the utilization of wireless electroencephalogram monitoring system for functional connectivity analysis and its capacity for deciphering neurological disorders. The paper reviews different methods adopted to estimate connectivity and the possible convergence of connectivity patterns in four neurological disorders: epilepsy, autism spectrum disorder, Alzheimer and Parkinson's disease. The paper reviews the current status of connectivity research in the aforementioned neurological disorders and its potential in developing a smart e‐health service.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.