This paper examines the problem of the advective-dispersive movement of a non-decaying, inert chemical dye solution through the pore space of a fluid saturated porous column. The objective of the paper is to present a complete study of the one-dimensional advective-dispersive transport problem by considering certain analytical solutions, experimental results and their comparisons with specific computational simulations. Dye concentrations obtained by means of an image processing method are used in conjunction with an analytical solution to identify the hydrodynamic dispersion coefficient that governs the advective-dispersive transport problem. The experimental results and identified parameters are also used to assess the computational estimates derived from several stabilized computational schemes available in the literature, for examining advection-dominated transport processes in porous media.