1994
DOI: 10.1109/22.310592
|View full text |Cite
|
Sign up to set email alerts
|

Quasi-static conductor loss calculations in transmission lines using a new conformal mapping technique

Abstract: A new approximation technique to find the total series impedance per unit length for quasi-TEM transmission limes including conductor loss has been developed. It is shown through the use of conformal mapping that both frequency dependent skin-depth and proximity effects can be accurately modeled. Comparison between experimental measurements and calculations for twin-lead, coplanar strips, parallel square bars, and coplanar waveguide all show excellent agreement. This technique is easily generalized to any tran… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1

Citation Types

0
11
0
1

Year Published

1997
1997
2021
2021

Publication Types

Select...
5
3
2

Relationship

2
8

Authors

Journals

citations
Cited by 28 publications
(12 citation statements)
references
References 20 publications
0
11
0
1
Order By: Relevance
“…The effective dielectric constant εeff and the overall capacitance for the CMS can be obtained: The scaling of the metal conductivity and the surface impedance concept, which has proven to be an efficient method for accurately evaluating the frequency dependent series impedance of transmission lines [10], is used to evaluate the frequency dependent inductance and the resistance of the CMS. Based on the mapping above, the scaling factor for the CMS and its series impedance equation are given as follows: δ is the skin depth and σ and t are the metal conductivity and the thickness of the metal, respectively.…”
Section: ⅲ Coplanar Multi Stripmentioning
confidence: 99%
“…The effective dielectric constant εeff and the overall capacitance for the CMS can be obtained: The scaling of the metal conductivity and the surface impedance concept, which has proven to be an efficient method for accurately evaluating the frequency dependent series impedance of transmission lines [10], is used to evaluate the frequency dependent inductance and the resistance of the CMS. Based on the mapping above, the scaling factor for the CMS and its series impedance equation are given as follows: δ is the skin depth and σ and t are the metal conductivity and the thickness of the metal, respectively.…”
Section: ⅲ Coplanar Multi Stripmentioning
confidence: 99%
“…El modelo matemático comúnmente utilizado para describir diversos fenómenos físicos que ocurren en nuestro alrededor, producto de la interacción de campos eléctricos y magnéticos, carga y corriente eléctrica, se describe en la teoría electromagnética propuesta por J.C. Maxwell, [25,26], simplemente conocida como ecuaciones de Maxwell. En algunos procesos termo-eléctricos de interés práctico se puede asumir que los campos electromagnéticos varian de manera senoidal con respecto al tiempo como, por ejemplo, el conformado eléctrico o proceso de deformación de piezas metálicas sometidas a la acción de campos electromagnéticos de gran intensidad [18]; en soldadura eléctrica donde se estudia el comportamiento termoeléctrico de los electrodos y del material de soldadura, producto del efecto de Joule, [13,6]; y, en el diseño de circuitos eléctricos que trabajan con señales digitales y analógicas, para poder determinar la variación de la capacitancia, resistencia e inductancia eléctrica del sistema por medio del campo eléctrico y magnético [32,15]. Dada una frecuencia fija y aplicando la transformación de Fourier en tiempo, las ecuaciones de Maxwell se reducen a un conjunto de ecuaciones estacionarias en el dominio de la frecuencia; las cuales a su vez pueden ser compactadas en una sóla ecuación diferencial de segundo orden conocida como ecuación vectorial de Helmholtz.…”
Section: Introductionunclassified
“…Conformal mapping is one of the most powerful tools of complex analysis, and has been applied in many mathematical and physical fields, including those dealing with transmission lines12345, integrated circuit components67891011, electrostatic actuators1213141516, transformation optics1718192021, channel flows2223, and rough surfaces242526. Conformal mapping transforms a structure with a complex shape into a geometry that makes the problem more easily solvable.…”
mentioning
confidence: 99%