Rod bundle experiments with axially uniform and nonuniform heat fluxes are examined to explore the potential limitations of using uniform rod bundle CHF data for CHF correlation development of light water reactors with nonuniform axial power distribution (APD). The case of upstream burnout is presented as an example of unique phenomena associated with nonuniform rod bundle CHF experiments. It is a result from combined effect of axial nonuniform power shape and different interchannel mixing mechanisms. In addition, several key parameters are investigated with respect to their potential impacts on the thermal-hydraulic behaviors between rod bundles with uniform and nonuniform APDs. This type of misrepresentation cannot be amended or compensated through the use of correction factors due to the lack of critical information in the uniform rod bundle CHF testing as well as the fundamental difference in the underlining driving mechanisms. Other potential issues involved with the use of uniform rod bundle CHF data for nonuniform APD system applications also present strong evidence concerning the limitations and inadequacy of using uniform rod bundle CHF data for the correlation, prediction, and design limit calculation for safety analysis.