In diagnostic radiology increasing attention has been focused on dose reduction while maintaining a clinically good image quality. With the use of digital detectors balancing dose vs image quality is done differently than in film-screen radiography, since dose and image brightness are uncoupled in digital imaging. In this study a new direct digital detector (flat-panel detector) was used in a dose-image optimisation of a simulated pelvic examination. X-ray images were taken with a direct digital detector (DDD), of the pelvic of a phantom using varying tube current (varying stochastic noise). The entrance surface dose was measured for each image. These images were scored by two radiologists according to EU guidelines. A dose comparison was made with an older PCR system (storage phosphor plates). With decreasing tube current the noise in the images increased and the image with the lowest dose and still acceptable image quality was identified. The results showed that the entrance surface dose using the DDD decreased from 1.4 mGy (PCR value) to 0.48 mGy (DDD standard settings). Through the optimisation the dose could be further decreased to 0.24 mGy while still maintaining an acceptable image quality. A substantial dose reduction was obtained with this new direct digital detector. This simple but efficient optimisation approach is easily applicable to other examinations and both DDD and storage phosphor plate detectors.