Interlocking of intramedullary nails is a challenging procedure in orthopedic trauma surgery. Numerous methods have been described to facilitate this process. But they are exposed patient and surgical team to X-rays or involves trial and error. An accurate and non-invasive method has been provided to easily interlocking intramedullary nails. By transferring a safe visible light inside the nail, a drilling position appears which use to drilling bone toward the nail hole. The wavelength of this light was obtained from ex-vivo spectroscopy on biological tissues which has optimal transmission, reflectance, and absorption properties. Moreover, animal and human experiments were performed to evaluate performance of the proposed system. Ex-vivo performance experiments were performed successfully on two groups of cow and sheep samples. Output parameters were procedure time and drilling quality which there were significant differences between the two groups in procedure time (P < 0.05). But no significant differences were observed in drilling quality (P > 0.05). Moreover, an In-vivo performance experiment was performed successfully on a middle-aged man. To compare the provided method, targeting-arm, and free-hand techniques, two human experiments were performed on a middle-aged and a young man. The results indicate the advantage of the proposed technique in the procedure time (P < 0.05), while the drilling quality is equal to the free-hand technique (P = 0.05). Intramedullary nail holes laser indicator is a safe and accurate method that reduced surgical time and simplifies the process. This new technology makes it easier to interlocking the intramedullary nail which can have good clinical applications.