Ultrasound imaging is frequently used in medicine. The quality of ultrasound images is often dependent on the skill of the sonographer. Several researchers have proposed robotic systems to aid in ultrasound image acquisition. In this paper we first provide a short overview of robot-assisted ultrasound imaging (US). We categorize robot-assisted US imaging systems into three approaches: autonomous US imaging, teleoperated US imaging, and human-robot cooperation. For each approach several systems are introduced and briefly discussed. We then describe a compact six degree of freedom parallel mechanism telerobotic system for ultrasound imaging developed by our research team. The long-term goal of this work is to enable remote ultrasound scanning through teleoperation. This parallel mechanism allows for both translation and rotation of an ultrasound probe mounted on the top plate along with force control. Our experimental results confirmed good mechanical system performance with a positioning error of < 1 mm. Phantom experiments by a radiologist showed promising results with good image quality.
In minimally invasive surgery methods such as laparoscopic surgery, surgical instruments are introduced through small incisions to minimize patient trauma and recovery times. To reduce the number of incisions, new techniques such as natural orifice transluminal endoscopic surgery (NOTES) have been proposed. Compared to laparoscopic surgery, the NOTES approach, which requires new technology and improved instruments, presents some unique challenges. Robotic NOTES (R-NOTES) could be an enabling technology for these procedures. In this paper, we first review relevant work in R-NOTES. We then present our work and the system architecture for an R-NOTES prototype system incorporating wireless command and control. The system was tested twice in swine animal studies.
Slipped Capital Femoral Epiphysis (SCFE) is a common hip displacement condition in adolescents. In the standard treatment, the surgeon uses intra-operative fluoroscopic imaging to plan the screw placement and the drill trajectory. The accuracy, duration, and efficacy of this procedure are highly dependent on surgeon skill. Longer procedure times result in higher radiation dose, to both patient and surgeon. A robotic system to guide the drill trajectory might help to reduce screw placement errors and procedure time by reducing the number of passes and confirmatory fluoroscopic images needed to verify accurate positioning of the drill guide along a planned trajectory. Therefore, with the long-term goals of improving screw placement accuracy, reducing procedure time and intra-operative radiation dose, our group is developing an imageguided robotic surgical system to assist a surgeon with pre-operative path planning and intraoperative drill guide placement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.