This paper presents computation of structural sound power and sound radiation modes, combined with structural dynamic equations to obtain the coupling relationship between sound and structures. As a result, the relationship between sound radiation modes of structures and structural vibration modes is established. The influence of the number and position of optimal secondary force sources on control of sound radiation modes is considered. Results show that sound radiation efficiency of sound radiation modes at the first order was more than that of sound radiation modes at other orders. The main diagonal element of coupling matrix between modes and sound radiation impedances was more than elements at other positions. Sound radiation modes at the first order were dominant sound radiation modes. When the number of secondary force sources was 4, the sound radiation power of structures was the lowest. Four force sources were taken as the basis to conduct on the related experiments in the anechoic chamber and compare with the computational result. Their results had a good consistency, which showed that the mentioned theory method was effective. Finally, the control strategy was applied to roofs of the vehicle. Experiments verified that sound pressure level of the driver in the low frequency was obviously improved, which remedied the defect of other optimization strategies for solving noises in the low frequency.