2010
DOI: 10.1103/physrevd.82.024041
|View full text |Cite
|
Sign up to set email alerts
|

Radiative processes in external gravitational fields

Abstract: Kinematically forbidden processes may be allowed in the presence of external gravitational fields. These can be taken into account by introducing generalized particle momenta. The corresponding transition probabilities can then be calculated to all orders in the metric deviation from the fieldfree expressions by simply replacing the particle momenta with their generalized counterparts. The procedure applies to particles of any spin and to any gravitational fields. Transition probabilities, emission power and s… Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
26
0

Year Published

2013
2013
2021
2021

Publication Types

Select...
5
1

Relationship

4
2

Authors

Journals

citations
Cited by 12 publications
(26 citation statements)
references
References 11 publications
0
26
0
Order By: Relevance
“…There are processes, however, in which massive particles emitting a photon are not kinematically forbidden. This is certainly the case when gravitation alters the dispersion relations of at least one of the particles involved [75,76]. This is also the case with MA [77].…”
Section: Introductionmentioning
confidence: 92%
See 1 more Smart Citation
“…There are processes, however, in which massive particles emitting a photon are not kinematically forbidden. This is certainly the case when gravitation alters the dispersion relations of at least one of the particles involved [75,76]. This is also the case with MA [77].…”
Section: Introductionmentioning
confidence: 92%
“…It now is possible to calculate the power radiated as photons in the process of Fig.1 following the procedure outlined in [75,76]. We find…”
Section: The Power Emittedmentioning
confidence: 99%
“…There are processes, however, in which massive particles emitting a photon are not kinematically forbidden. This is certainly the case when gravitation alters the dispersion relations of at least one of the particles involved [2]. We stress here that even the reduction of a Feynman diagram by a single vertex would result in a cross-section gain of a factor (GM/R) 2 , where M and R are the mass and radius of the gravitational source (unitsh = c = 1).…”
Section: Introductionmentioning
confidence: 99%
“…It may be argued that a transition amplitude M f →f γ must be added to Equation (8) at O(γ µν ), because the contraction in Equation (8) is, in general, accomplished by means of g µν , and g(x) contains a part that is independent of γ µν . The transition amplitude M , estimated in [2], is given: by [6] …”
Section: The Processmentioning
confidence: 99%
See 1 more Smart Citation