This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. OMEGA measurements of mafic surfaces, we develop several sensitivity tests to assess the extent to which the model can be applied to predict pyroxene composition (high-calcium phase and low-calcium phase), abundance of almost neutral components (plagioclase) in the near-infrared wavelength as well as grain sizes, by using a library of selected end-members.Results of the sensitivity tests indicate that the scattering model can estimate both abundances and grain sizes of major basaltic materials of low albedo regions within uncertainties (+/-5 to 15 vol. %). The model is then applied to data from dissected cratered terrains located in Terra Meridiani. The derived grain size including uncertainties is in the 50-500 µm range. This is consistent with the thermal inertia and albedo of this region, which indicates a fine sand-sized surface with little dust. The abundances of plagioclase (43-57%) and pyroxenes (35-45+/-10%, including 11+/-5% of low-calcium phase) are in good agreement with previous basaltlike compositions of low albedo regions from thermal infrared spectral measurements. The method presented in this paper will provide a valuable tool for evaluating the modal mineralogy of other mafic regions of Mars observed in the near-infrared wavelength range.