Following the 1986 Chernobyl accident radiocaesium levels in sheep meat in some upland areas of the United Kingdom were above the national intervention limit. West Cumbria was one of these areas and restrictions are currently still in place. In addition to deposition from the Chernobyl accident, Cumbria has been subject to radiocaesium deposition from atmospheric nuclear weapons tests, the 1957 Windscale accident and routine releases from the Sellafield nuclear reprocessing plant. A Monte-Carlo approach has been used to try to predict areas in west Cumbria where radiocaesium activity concentrations in lamb meat would require the imposition of restrictions at different times after the Chernobyl accident. The approach models the transfer of radiocaesium from soil to vegetation, based upon soil organic matter, and from vegetation to lamb meat. Spatial inputs are soil organic matter and total post-Chernobyl (137)Cs and (134)Cs deposition; a ratio of Chernobyl (137)Cs to (134)Cs deposition has been used to differentiate Chernobyl and pre-Chernobyl (137)Cs deposition. Comparisons of predicted radiocaesium transfer from soil-vegetation and the spatial variation in lamb (137)Cs activity concentrations are good and predicted restricted areas with time after Chernobyl compare well to the restricted areas set by UK government. We predict that restrictions may be required until 2024 and that in some areas the contribution of pre-Chernobyl (137)Cs to predicted lamb radiocaesium activity concentrations is significant, such that restrictions may only have been required until 1994 as a consequence of Chernobyl radiocaesium deposition alone. This work represents a novel implementation of a spatial radioecological model using a Monte-Carlo approach.