For the first time, chemical separations of element 106 (Seaborgium, Sg) were performed in aqueous solutions. The isotopes 265 Sg and 266 Sg were produced in the 248 Cm + 22 Ne reaction at a beam energy of 121 MeV. The reaction products were continuously transported by a He(KCl)-jet to the computer-controlled liquid chromatography system ARCA. In 0.1 M HNO3/5 X ΙΟ -4 M HF, Sg was found to be eluted within 10 s from 1.6X8 mm cation-exchange columns (Aminex A6, 17.5±2 μπι) together with the hexavalent Mo-and W-ions, while hexavalent U-ions and tetravalent Zr-, Hf-, and element 104 ions were strongly retained on the column. Element 106 was detected by measuring correlated α-decays of the daughter isotopes 78-s 261 104 and 26-s 257 102. For the isotope 266 Sg, we have evidence for a spontaneous fission branch. It yields a partial spontaneousfission half-life which is in agreement with recent theoretical predictions. The chemical results show that the most stable oxidation state of Sg in aqueous solution is +6, and that like its homologs Mo and W, Sg forms neutral or anionic oxo-or oxohalide-compounds under the present condition. In these first experiments, Sg exhibits properties very characteristic of group 6 elements, and does not show U-like properties.