PET (positron emission tomography) is a powerful diagnostic and imaging technique which requires short-lived positron emitting isotopes. The most commonly used are accelerator-produced (11)C and (18)F. An alternative is the use of metallic positron emitters. Among them (68)Ga deserves special attention because of its availability from long-lived (68)Ge/(68)Ga generator systems which render (68)Ga radiopharmacy independent of an onsite cyclotron. The coordination chemistry of Ga(3+) is dominated by its hard acid character. A variety of mono- and bifunctional chelators have been developed which allow the formation of stable (68)Ga(3+)complexes and convenient coupling to biomolecules. (68)Ga coupling to small biomolecules is potentially an alternative to (18)F- and (11)C-based radiopharmacy. In particular, peptides targeting G-protein coupled receptors overexpressed on human tumour cells have shown preclinically and clinically high and specific tumour uptake. Kit-formulated precursors along with the generator may be provided, similar to the (99)Mo/(99m)Tc-based radiopharmacy, still the mainstay of nuclear medicine.