Determination of alosetron in the presence of its degradation products was studied and validated by a novel HPLC method. The separation of the drug and its degradation products was achieved with the Jones Chromatography C18 analytical column (150 mm x 4.6 mm; 3 µm) with a stationary phase in isocratic elution mode. The mobile phase used was 0.01 M ammonium acetate, pH-adjusted to 3.5 with glacial acetic acid and acetonitrile in the ratio of 75:25 (V/V) at a flow rate of 1 ml/min and UV detection was carried out at 217 nm. Further, the drug was subjected to stress studies for acidic, basic, neutral, oxidative, and thermal degradations as per ICH guidelines and the drug was found to be labile in base hydrolysis and oxidation, while stable in acid, neutral, thermal, and photolytic degradation conditions. An MS study has been performed on the major degradation products to predict the degradation pathway of alosetron. The method provided linear responses over the concentration range of 100–1500 ng/ml and regression analysis showed a correlation coefficient value (r2) of 0.994. The LOD and LOQ were found to be 1 ng/ml and 3 ng/ml, respectively. The developed LC method was validated as per ICH guidelines with respect to accuracy, selectivity, precision, linearity, and robustness.