2022
DOI: 10.1007/s10278-021-00559-7
|View full text |Cite
|
Sign up to set email alerts
|

Radiomic Quantification for MRI Assessment of Sacroiliac Joints of Patients with Spondyloarthritis

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
6
0
1

Year Published

2022
2022
2024
2024

Publication Types

Select...
7
1

Relationship

0
8

Authors

Journals

citations
Cited by 11 publications
(12 citation statements)
references
References 29 publications
0
6
0
1
Order By: Relevance
“…Radiomics analysis has been applied to assess inflammatory sacroiliitis. A radiomics model with a machine learning classifier extracting features from fat-suppressed fluid-sensitive MR images showed sensitivities of 70% to 100% and specificities of 85% to 92% for differentiating normal sacroiliac joints from sacroiliitis 27 . The performance was overall similar to the assessments of 2 radiologists.…”
Section: Radiomics Of Nononcologic Musculoskeletal Radiologymentioning
confidence: 63%
“…Radiomics analysis has been applied to assess inflammatory sacroiliitis. A radiomics model with a machine learning classifier extracting features from fat-suppressed fluid-sensitive MR images showed sensitivities of 70% to 100% and specificities of 85% to 92% for differentiating normal sacroiliac joints from sacroiliitis 27 . The performance was overall similar to the assessments of 2 radiologists.…”
Section: Radiomics Of Nononcologic Musculoskeletal Radiologymentioning
confidence: 63%
“…Das Modell zeigte eine Sensitivität von 70 % bis 100 % und eine Spezifität von 85 % bis 92 % bei der Unterscheidung zwischen normalen Sakroiliakalgelenken und der Sakroiliitis. Die Leistung des Modells war vergleichbar mit der Beurteilung durch zwei Radiologen (mit jeweils vier Jahren Erfahrung in muskuloskelettaler Diagnostik) [27].…”
Section: Ansätze Aus Dem Bereich Radiomicsunclassified
“…[ 121 ] Another study found certain features differed between axial and peripheral SpA and could distinguish subtypes with excellent accurac. [ 120 ]…”
Section: Introductionmentioning
confidence: 99%