Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Biochar is being studied for few decades as it finds various applications in mitigating climate change, improving soil properties and water retention which subsequently potentially improves the crop yields. One of the parameters potentially predicting the crop yield is the crop density during the vegetation period as it represents the number of plants per area unit that can photosynthesize and potentially bring yield at the end of vegetation season. The paper presents the observations on the changes in canopy density during the vegetative part of the vegetation season of maize (Zea mays L.) which was estimated using non-destructive method of close canopy imagery. The field observations were done at the experimental site in Dolna Malanta near Nitra (Slovakia). In 2014, a commercially purchased soil additive (biochar mixed with compost � BC) was applied to plots (4 x 6 m of size) of agricultural land in the rates of 0, 10 and 20 t/ha. The application rates of BC were combined with 3 levels of NPK fertilizer application (0, 160 and 240 kg N/ha). During the observation period from mid-May 2015 up to beginning of July 2015, images of maize canopy parallel to soil surface were taken from above the crop canopy with camera built up in the mobile. The canopy density was evaluated using the Breedpix software. The canopy density three weeks after sowing ranged from 1.7 to 2.1 % at the control treatments (without BC) at different fertilization levels. The values at treatments with BC ranged from 2.1 up to 2.4 and from 1.9 up to 2.6 % at the application rate 10 and 20 t/ha, respectively. Although in general higher values were observed at treatments with BC application, the differences were not significant. The canopy density over the studied period increased in all treatments, at the end of June the values ranged from 39 to 40 % at the treatments without BC and from 39 to 46 % at treatments with BC at 10 t/ha and from 38 up to 58 % at the treatments with BC at 20 t/ha application rate. Although majority of differences were not statistically significant, it can be concluded that overall biochar mixed with compost slightly increased the density of the maize canopy at least in the early stages of the development. As the maize height was increasing, the sampling method was not suitable as it was not possible to take image of the full canopy within the row. For such applications it might be useful to take photos from larger height preferably with UAV.
Biochar is being studied for few decades as it finds various applications in mitigating climate change, improving soil properties and water retention which subsequently potentially improves the crop yields. One of the parameters potentially predicting the crop yield is the crop density during the vegetation period as it represents the number of plants per area unit that can photosynthesize and potentially bring yield at the end of vegetation season. The paper presents the observations on the changes in canopy density during the vegetative part of the vegetation season of maize (Zea mays L.) which was estimated using non-destructive method of close canopy imagery. The field observations were done at the experimental site in Dolna Malanta near Nitra (Slovakia). In 2014, a commercially purchased soil additive (biochar mixed with compost � BC) was applied to plots (4 x 6 m of size) of agricultural land in the rates of 0, 10 and 20 t/ha. The application rates of BC were combined with 3 levels of NPK fertilizer application (0, 160 and 240 kg N/ha). During the observation period from mid-May 2015 up to beginning of July 2015, images of maize canopy parallel to soil surface were taken from above the crop canopy with camera built up in the mobile. The canopy density was evaluated using the Breedpix software. The canopy density three weeks after sowing ranged from 1.7 to 2.1 % at the control treatments (without BC) at different fertilization levels. The values at treatments with BC ranged from 2.1 up to 2.4 and from 1.9 up to 2.6 % at the application rate 10 and 20 t/ha, respectively. Although in general higher values were observed at treatments with BC application, the differences were not significant. The canopy density over the studied period increased in all treatments, at the end of June the values ranged from 39 to 40 % at the treatments without BC and from 39 to 46 % at treatments with BC at 10 t/ha and from 38 up to 58 % at the treatments with BC at 20 t/ha application rate. Although majority of differences were not statistically significant, it can be concluded that overall biochar mixed with compost slightly increased the density of the maize canopy at least in the early stages of the development. As the maize height was increasing, the sampling method was not suitable as it was not possible to take image of the full canopy within the row. For such applications it might be useful to take photos from larger height preferably with UAV.
The threat of climate change and its negative consequences is currently a very serious and immediate problem. Undoubtedly, the most striking manifestation of climate change is global warming, both on land and in the oceans. Increasing the average air temperature adversely affects natural ecosystems, which find it very difficult to adapt to this change. Significant consequence of climate change is also the fundamental impact on water resources. In this work we focused on the influence of climatic conditions on the dynamics of walnut tree (Juglans regia L.) in July (2019-2021), when the influence of lack of precipitation on the walnut growth are most critical. We compared dendrometric changes to air temperature and precipitation. For this measurement were used Dendrometers DD-S from Ecomatic at two groups of walnut trees � irrigated and non-irrigated trees. From the results, it is found a significant decrease in precipitation compared to the climate normal, most marked in 2021. A significant difference between irrigated and non-irrigated walnuts is seen in 2019 (3.2 mm) and in 2020 (2.4 mm). In 2021, the difference is only 0.85 mm, which could be due to insufficient irrigation, lack of precipitation, and the quantity of fruit. The impact of climate change and its greatest impact � drought, can be observed throughout the period under review. This research can serve as a basis for drought assessment and will be further developed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.