1997
DOI: 10.1016/s0925-2312(96)00022-7
|View full text |Cite
|
Sign up to set email alerts
|

Rainfall estimation using artificial neural network group

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
20
0
1

Year Published

2004
2004
2008
2008

Publication Types

Select...
5
4

Relationship

2
7

Authors

Journals

citations
Cited by 53 publications
(21 citation statements)
references
References 8 publications
0
20
0
1
Order By: Relevance
“…The ability of ANNs to identify and learn the input-output patterns without being explicitly programmed to do so, makes them a promising tool to model complex hydrological processes. Key examples of the application of ANNs in hydrology includes: rainfall-runoff modelling (Hsu et al, 1995;Minns & Hall, 1996;Shamseldin, 1997), and rainfall forecasting (French et al, 1992;Zhang et al, 1997). More information on the application of ANNs in water related studies can be found in the ASCE Task Committee on the Application of Artificial Neural Networks in Hydrology (2000) and in Maier & Dandy (2000).…”
Section: Introductionmentioning
confidence: 99%
“…The ability of ANNs to identify and learn the input-output patterns without being explicitly programmed to do so, makes them a promising tool to model complex hydrological processes. Key examples of the application of ANNs in hydrology includes: rainfall-runoff modelling (Hsu et al, 1995;Minns & Hall, 1996;Shamseldin, 1997), and rainfall forecasting (French et al, 1992;Zhang et al, 1997). More information on the application of ANNs in water related studies can be found in the ASCE Task Committee on the Application of Artificial Neural Networks in Hydrology (2000) and in Maier & Dandy (2000).…”
Section: Introductionmentioning
confidence: 99%
“…Now in the same vein as Hornik (1991) and Leshno (1993), it is possible to show that piecewise function groups (of MLPs employing locally bounded, piecewise continuous activation functions and thresholds) are capable of approximating any piecewise continuous function, to any degree of accuracy (Zhang, Fulcher, & Scofield, 1997).…”
Section: Honn Groupsmentioning
confidence: 99%
“…The three application areas in which we have focused our endeavors to date are (1) human-face recognition , (2) satellite weather forecasting (Zhang, Fulcher, & Scofield, 1997;Zhang & Fulcher, 2004), and (3) financial time-series prediction (Zhang, Xu, & Fulcher, 2002;Zhang, Zhang, & Fulcher, 2000). In each case, we are typically dealing with discontinuous, nonsmooth, complex training data, and thus HONN (and HONN groups) come into their own.…”
Section: Honn Applicationsmentioning
confidence: 99%
“…Algunas aplicaciones de RNCs en el manejo y la gestión de los recursos hídricos incluyen la caracterización del proceso lluvia-escorrentía (Hsu et al, 1995;Lorrai y Sechi, 1995;Mason et al, 1996;Abrahart et al, 1999;Tokar y Johnson, 1999;Thirumalaiah y Deo, 2000;Tokar y Markus, 2000;Chiang et al, 2004;Moradkhani et al, 2004;Anctil y Rat, 2005), estimación a corto plazo del estado de ríos (Thirumalaiah y Deo, 1998Abrahart y See, 2000See y Openshaw, 2000;Cameron et al, 2002), predicción de lluvias (French et al, 1992;Zhang et al, 1997;Kuligowski y Barros, 1998;Palazón y García, 2004), modelación de aguas subterráneas (Roger y Dowla, 1994;Yang et al, 1997), predicción de demandas de agua en sistemas de abastecimiento urbano y zonas regables (Griñó, 1992;Pulido-Calvo et al, 2002, 2003, descripción de procesos de infiltración (Álvarez y Bolado, 1996), análisis de sequías (Shin y Salas, 2000), etc. Otras muchas aplicaciones de RNCs en hidrología se detallan en ASCE (2000aASCE ( , 2000b.…”
Section: Introductionunclassified