A high‐resolution near‐field spectroscopic mapping technique is successfully applied to investigate the influence of thermal annealing on the morphology of a poly(3‐hexylthiophene) and [6,6]‐penyl‐C61 butyric acid methyl ester (P3HT:PCBM) blend film. Based on the simultaneously recorded morphological and spectroscopic information, the interplay among the blend film morphology, the local P3HT:PCBM molecular distribution, and the P3HT photoluminescence (PL) quenching efficiency are systematically discussed. The PL and Raman signals of the electron donor (P3HT) and acceptor (PCBM) are probed at an optical resolution of approximately 10 nm, which allows the chemical nature of the different domains to be identified directly. In addition, the local PL quenching efficiency, which is related to the electron transfer from P3HT to PCBM, is quantitatively revealed. From these experimental results, it is proposed that high‐resolution near‐field spectroscopic imaging is capable of mapping the local chemical composition and photophysics of the P3HT:PCBM blends on a scale of a few nanometers.