Abstract-Measurement-based timing analysis approaches are increasingly making their way into several industrial domains on account of their good cost-benefit ratio. The trustworthiness of those methods, however, suffers from the limitation that their results are only valid for the particular paths and execution conditions that the user is able to explore with the available input vectors. It is generally not possible to guarantee that the collected measurements are fully representative of the worst-case timing behaviour.In the context of measurement-based probabilistic timing analysis, the Extended Path Coverage (EPC) approach has been recently proposed as a means to extend the representativeness of measurement observations, to obtain the same effect of full path coverage. At the time of its first publication, EPC had not reached an implementation maturity that could be trialled industrially. In this work we analyze the practical implications of using EPC with real-world applications, and discuss the challenges in integrating it in an industrial-quality toolchain. We show that we were able to meet EPC requirements and successfully evaluate the technique on a real Railway application, on top of a commercial toolchain and full execution stack.