Abstract-Measurement-based probabilistic timing analysis (MBPTA) computes trustworthy upper bounds to the execution time of software programs. MBPTA has the connotation, typical of measurement-based techniques, that the bounds computed with it only relate to what is observed in actual program traversals, which may not include the effective worst-case phenomena. To overcome this limitation, we propose Extended Path Coverage (EPC), a novel technique that allows extending the representativeness of the bounds computed by MBPTA. We make the observation data probabilistically path-independent by modifying the probability distribution of the observed timing behaviour so as to negatively compensate for any benefits that a basic block may draw from a path leading to it. This enables the derivation of trustworthy upper bounds to the probabilistic execution time of all paths in the program, even when the user-provided input vectors do not exercise the worst-case path. Our results confirm that using MBPTA with EPC produces fully trustworthy upper bounds with competitively small overestimation in comparison to state-of-the-art MBPTA techniques.
In the last couple of decades we have witnessed a steady growth in the complexity and widespread of real-time systems. In order to master the rising complexity in the timing behaviour of those systems, rightful attention has been given to the development of time-predictable computer architectures. The Patmos time-predictable microprocessor used in the T-CREST project employs performance-enhancing hardware while keeping the system analyzable. Time composability, at both hardware and software level, is a considerable aid to reducing the integration costs of complex applications. A time-composable operating system, on top of a time-composable processor, facilitates incremental development, which is highly desirable for industry. This paper makes a twofold contribution. First, we present enhancements to the Patmos processor to allow achieving time composability at the operating system level. Second, we extend an existing time-composable operating system, TiCOS, to make best use of advanced Patmos hardware features in the pursuit of time composability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.