Skin and soft tissue infections (SSTIs) have increased problematically in hospital and ambulatory settings due to the poor immunity of hosts and multidrug-resistant pathogens. Mupirocin (MUP), a global topical antibiotic, is used for the treatment of SSTIs caused by various pathogens due to its unique mechanism of action. However, the therapeutic efficiency of MUP is hampered due to the protein binding and drug resistance caused by frequent use. A combined report covering the various aspects of MUP, such as the synthesis of the novel formulation, loading of the drug, and application against various skin infections, is missing. This comprehensive review focuses on various novel drug delivery strategies such as composite biomaterials/scaffold, hydrogel dressings, liposomes, liposomal hydrogel, microparticles/microspheres, microsponges, nanocapsules, nanofibers, silicone-based adhesive patches, and topical sprays. The therapeutic effect of the MUP can be synergized by combining with other agents and using novel strategies. The objective is to enhance patient compliance, decrease the resistance, magnify the delivery of MUP, and overcome the limitations of conventional formulations. Moreover, the carriers/dressing materials are biocompatible, biodegradable, stimulate wound healing, protect the wound from external environmental contamination, adsorb the wound exudates, and are permeable to oxygen and moisture. This review will help researchers to explore further the treatment of various bacterial skin infections by using MUP-loaded novel formulations with better efficacy, utilizing the novel nanostructures or combinatorial methods.